Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A pentanuclear bimetallic complex of manganese(II) and aluminium(III) ions: tetra- μ_2 -iodido-iodidobis(μ_3 -2methoxyethanolato)bis(μ_2 -2-methoxyethanolato)dimethyl(tetrahydrofuran- κ O)aluminium(III)tetramanganese(II)

Lucjan B. Jerzykiewicz,* Józef Utko and Piotr Sobota

Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland Correspondence e-mail: jerzyk@wchuwr.pl

Received 13 September 2007 Accepted 24 September 2007 Online 13 October 2007

The molecule of the title compound, $[Mn_4Al(CH_3)_2-(C_3H_7O_2)_4I_5(C_4H_8O)]$, contains one Al^{III} and four Mn^{II} ions. Two Mn atoms are five-coordinate in the form of a trigonal bipyramid or a square pyramid. The two other Mn atoms are six-coordinate with an octahedral geometry. The fourcoordinate Al atom is linked to the manganese core by μ -O_{alkoxo} bridges, forming an almost planar five-membered ring.

Comment

Alkylaluminum alkoxides have been investigated as components of Ziegler–Natta catalyst systems (Lin *et al.*, 1999; Rhine *et al.*, 1999; Sobota, 2004; Lewinski *et al.*, 2005). To date, several heterometallic aluminium complexes have been synthesized and characterized (Evans *et al.*, 1998; Sobota *et al.*, 2000, 2002; Utko *et al.*, 2004; Jerzykiewicz *et al.*, 2006). In a continuation of our systematic study in this field, a new heterometallic aluminium complex with functional alcohols has been prepared. The title compound, (I), crystallizes in the centrosymmetric space group $P2_1/c$. The molecular structure is shown in Fig. 1 and selected bond lengths and angles are given in Table 1.

The crystal structure consists of a tetranuclear manganese(II) unit linked to an Al(CH₃)₂ group. In the tetramer, there are two types of Mn atoms [five-coordinate (T5) Mn1 and Mn2, and six-coordinate (T6) Mn3 and Mn4], linked by μ_3 -O_{alkoxo} and μ -I bridges. The Al atom is connected to the manganese core by μ -O_{alkoxo} bridges, forming an almost planar Al1/O31/Mn3/Mn4/O41 system [the largest deviation of atoms from the mean plane is 0.014 (2) Å]. This planar arrangement of a five-membered trimetallic ring containing aluminium is comparable to that found in a chloride analogue, *viz*. [Mn₃Al(μ_3 -OCH₂CH₂OCH₃)(μ -OCl₃(μ -OCH₂CH₂O- CH₃)₂(THF)₂(CH₃)₂Cl] (Jerzykiewicz *et al.*, 2006; THF is tetrahydrofuran), but different from that in another heterometallic aluminium compound with alkoxides, *viz*. [(CH₃)₃-Al(μ - η^2 -OCH₂CH₂OCH₃)Eu(μ - η^2 -OCH₂CH₂OCH₃)₂Al-(CH₃)₂]₂ (Evans *et al.*, 1998).

The five-coordinate Mn atoms have trigonal-bipyramidal (Mn1) and square-pyramidal (Mn2) geometries with the value of the parameter τ equal to 0.73 and 0.02, respectively [$\tau = (\beta - \alpha)/60$, where β and α are the largest coordination angles; for square-pyramidal geometry $\tau = 0$, and for trigonal-bipyramidal geometry $\tau = 1$ (Addison *et al.*, 1984)]. To date, only a few examples of complexes containing two Mn^{II} ions with different geometries around the central atoms have been described [*e.g.* Na₂(H₂en)₂{(VO)₁₀[B₁₄O₃₀(OH)₂]₂}{Mn₄(C₂O₄)-[B₂O₄(OH)₂]₂}Mn(H₂O)₂·(H₃O)₁₂(H₂O)₁₉, where $\tau = 0.25$ and 0.58 (Cao *et al.*, 2005); en is ethylenediamine], in spite of the

Figure 1

A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

fact that double square-pyramidal geometries are frequently observed (Kitajima *et al.*, 1991; Evans *et al.*, 1998; Pajunen *et al.*, 1998; Crewdson *et al.*, 2003; Bieller *et al.*, 2005).

The surroundings of the six-coordinate Mn3 and Mn4 atoms are both significantly distorted from regular octahedral geometry, as is clearly evident from the deformation of the O-Mn-O, I-Mn-O and I-Mn-I bond angles, which range from 77.88 (15)° for the chelating ligand to 100.76 (11)° for bridging $O_{alkoxide}$ and I ligands.

The Al atom has a distorted tetrahedral geometry. The X-Al1-X angles [$X = CH_3$ or O_{alkoxo} ; 102.5 (2)–117.3 (3)°] are similar to those found in Mn₃Al(CH₃)₂Cl₄(OCH₂CH₂OCH₃)₃-(THF)₂ [102.11 (10)–112.25 (16)°]. The Al-C and Al-O bond distances are in the range observed previously for four-coordinate aluminium compounds (Kumar *et al.*, 1994; Schumann *et al.*, 1996).

The Mn–O bond lengths are similar to those observed for the corresponding manganese compounds (Nihei *et al.*, 2002; Crewdson *et al.*, 2003; Jerzykiewicz *et al.*, 2006) and range from 2.108 (4) to 2.282 (4) Å. These distances can be grouped into six distinct categories (Table 3). The terminal Mn–I distance of 2.688 (2) Å is significantly shorter than the bridging Mn–I distances, which range from 2.773 (2) to 3.033 (2) Å, as expected (Beagley *et al.*, 1984, 1990; Mantel *et al.*, 2004). The closest Mn····Mn distances are in the range 3.152 (2)– 3.570 (3) Å.

Only very weak intermolecular hydrogen bonds, formed between the terminal I5 atom and one of the H atoms of a methyl group, have been found (Table 2).

Experimental

All procedures were carried out under a nitrogen atmosphere using a standard Schlenk line. A Schlenk flask was charged with $[Mn_4I_4(CH_3OCH_2CH_2O)_4(CH_3OCH_2CH_2OH)_4]$ (1.63 g, 1.22 mmol), $C_6H_5CH_3$ (60 ml) and THF (20 ml). The clear solution was stirred vigorously at 253 K and Al(CH₃)₃ (8.5 ml, 2.0 *M* solution in $C_6H_5CH_3$, 17.0 mmol) was added dropwise. The mixture was warmed to room temperature and stirred for 48 h. The resulting white precipitate was filtered off, and the filtrate was concentrated until a slight turbidity was observed; the solution was then warmed to 333– 343 K until it lost its turbidity. The clear solution was layered with hexanes (20 ml). After a few weeks, crystals of (I) (0.62 g, 0.48 mmol, 40%) were obtained directly from the solution.

Crystal data

(*CrysAlis CCD*; Oxford Diffraction, 2006) $T_{min} = 0.321, T_{max} = 0.666$

[Mn ₄ Al(CH ₃) ₂ (C ₃ H ₇ O ₂) ₄ -	$\beta = 92.26 (4)^{\circ}$
$I_5(C_4H_8O)]$	$V = 3705 (2) \text{ A}^3$
$M_r = 1283.76$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.896 (4) Å	$\mu = 5.56 \text{ mm}^{-1}$
b = 14.899 (4) Å	T = 100 (2) K
c = 31.516 (8) Å	$0.12 \times 0.08 \times 0.04 \text{ mm}$
Data collection	
Kuma KM-4 CCD κ-axis	49961 measured reflections
diffractometer	8496 independent reflections
Absorption correction: analytical	6775 reflections with $I > 2\sigma(I)$
(CrysAlis CCD; Oxford	$R_{\rm int} = 0.050$

Table 1

Selected geometric parameters (Å, °).

Mn1-I1	2.773 (2)	Mn2-O21	2.131 (3)
Mn3-I1	2.890 (2)	Mn3-O11	2.214 (4)
Mn1-I2	2.870 (2)	Mn3-O21	2.185 (3)
Mn2-I2	2.802 (2)	Mn3-O30	2.231 (4)
Mn3-I3	2.979 (2)	Mn3-O31	2.109 (4)
Mn4-I3	2.820 (2)	Mn4-O20	2.223 (4)
Mn2-I4	2.780 (2)	Mn4-O21	2.147 (3)
Mn4-I4	3.033 (2)	Mn4-O40	2.192 (3)
Mn1-I5	2.688 (2)	Mn4-O41	2.108 (4)
Mn1-O11	2.232 (3)	Al1-O31	1.817 (4)
Mn1-O50	2.282 (4)	Al1-O41	1.811 (4)
Mn2-O10	2.199 (4)	Al1-C1	1.985 (6)
Mn2-O11	2.171 (3)	Al1-C2	1.979 (6)
Mn1-I1-Mn3	78.13 (5)	O11-Mn3-O31	177.94 (14)
Mn1-I2-Mn2	77.03 (5)	O21-Mn3-O30	169.96 (15)
Mn3-I3-Mn4	73.70 (5)	O21-Mn3-O31	99.93 (13)
Mn2-I4-Mn4	68.19 (5)	O30 - Mn3 - O31	77.88 (15)
I1 - Mn1 - I2	117.78 (5)	I3-Mn4-I4	90.26 (5)
I1 - Mn1 - I5	117.11 (5)	I3-Mn4-O20	163.05 (9)
I1 - Mn1 - O11	88.45 (10)	I3-Mn4-O21	84.96 (10)
I1 - Mn1 - O50	86.59 (10)	I3-Mn4-O40	100.76 (11)
I2-Mn1-I5	124.72 (5)	$I_{3}-Mn_{4}-O41$	98.07 (11)
$I_2 - Mn_1 - O_{11}$	85.50 (10)	I4-Mn4-O20	85 26 (10)
$I_2 - Mn_1 - O_{50}$	87.89 (10)	I4 - Mn4 - O21	87.07 (10)
15 - Mn1 - O11	102.01 (9)	I4-Mn4-O40	94 68 (11)
15 - Mn1 - O50	89.23 (12)	I4 - Mn4 - O41	170 37 (11)
$O_{11} - M_{n1} - O_{50}$	168.75 (14)	O20 - Mn4 - O21	78.50 (12)
$I_2 - Mn_2 - I_4$	112.69 (5)	$O_{20}^{-}Mn4 - O_{40}^{-}$	95.91 (14)
$I_{2}^{2}-Mn_{2}^{2}-O10$	93 70 (12)	$O_{20}^{-}Mn4 - O_{41}^{-}$	88.08 (15)
$I_2 = Mn_2 = 0.10$ $I_2 = Mn_2 = 0.11$	88 33 (10)	O21 - Mn4 - O40	174.00 (14)
$I_2 - Mn_2 - O_{21}$	100.67(10)	O21 - Mn4 - O41	98 43 (13)
$I4 - Mn^2 - O10$	96 34 (12)	O40 - Mn4 - O41	79.08 (14)
I4 - Mn2 - O11	158 75 (10)	0.31 - A11 - 0.41	102 5 (2)
$I4 - Mn^2 - O21$	94 20 (9)	$O_{31} - A_{11} - C_{1}$	102.0(2) 109.2(2)
$010 - Mn^2 - 011$	78 53 (14)	$O_{31} - A_{11} - C_{2}$	106.8(2)
010 - Mn2 - 021	157 31 (14)	041 - Al1 - C1	100.0(2) 109.2(2)
010 Mm2 021 011 - Mm2 - 021	84 39 (13)	041 - A11 - C2	109.2(2) 110.8(2)
I1 - Mn3 - I3	173.07(5)	C1 = A I1 = C2	110.0(2) 117.3(3)
I1 - Mn3 - O11	85.88 (9)	Mn1 = O11 = Mn2	106.72(15)
11 - Mn3 - O21	94.14(9)	Mn1 = O11 = Mn2	106.72(13) 106.83(14)
I1 - Mn3 - O21 I1 - Mn3 - O30	95.79(12)	Mn1 = 011 = 011	1162(3)
11 - Mn3 - O31	94.06 (11)	Mn2 = 011 = Mn3	91.91(12)
$I_{3} = Mn_{3} = O_{11}$	89.02 (9)	Mn2 = O11 = Mn3 Mn2 = O21 = Mn3	93.81 (13)
13 - Mn3 - 021	80.49 (9)	Mn2 = O21 = Mn3 Mn2 = O21 = Mn4	99 50 (14)
$I_3 = Mn_3 = O_{21}$ $I_3 = Mn_3 = O_{30}$	89 73 (12)	Mn3 = 021 = Mn4	106.90 (14)
$I_3 = Mn_3 = 0.031$	91 20 (11)	Mn3 = 031 = A11	1384(2)
$011 - Mn^3 - 021$	82 14 (13)	Mn3 = 031 = C31	108.0(2)
011 - Mn3 - 021 011 - Mn3 - 030	100.07(14)	$\Delta 11 - 031 - 031$	1125(3)
011 - 000 = 000	100.07 (14)	111-031-031	112.5 (3)

Table 2

Hydrogen-bond	geometry (Å, °).
---------------	----------------	----

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C43 $-$ H43 A ···I5 ⁱ	0.98	3.05	4.012 (6)	168

Symmetry code: (i) x, y - 1, z.

Table 3

The Mn–O bond lengths (Å) versus coordination number (CN) of the $Mn^{\rm II}$ atom.

	CN	Mn-O	Mn-O _{average}
$Mn - \mu_2 - O$	6	2.108 (4)-2.109 (4)	2.109(1)
$Mn - \mu_3 - O$	5	2.131 (3)-2.232 (3)	2.178 (5)
$Mn - \mu_3 - O$	6	2.147 (3)-2.214 (4)	2.182 (3)
Mn-O _{ether} (chelating ligands)	5	2.199 (3)	2.199 (3)
$Mn - O_{ether}$ (chelating ligands)	6	2.192 (3)-2.231 (4)	2.215 (1)
Mn-O _{ether} (THF)	5	2.281 (4)	2.281 (4)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.080$ S = 1.098496 reflections 340 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.89 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -2.01 \text{ e } \text{\AA}^{-3}$

All H atoms were located in difference maps and subsequently treated as riding atoms, with C–H distances of 0.98 (CH₃) and 0.99 Å (CH₂), and with U_{iso} (H) values of 1.5 or 1.2 times U_{eq} (C) for CH₃ and CH₂ groups, respectively.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXTL* (Bruker, 2003); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *SHELXTL*, *PLATON* (Version 1.081; Spek, 2003), *enCIFer* (Version 1.2; Allen *et al.*, 2004) and *publCIF* (Westrip, 2007).

The authors thank the State Committee for Scientific Research (Poland) for support of this research (grant No. 3 T09A 083 26).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN3065). Services for accessing these data are described at the back of the journal.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Beagley, B., Briggs, J. C., Hosseiny, A., Hill, W. E., King, T. J., McAuliffe, C. A. & Minten, K. (1984). *Chem. Commun.* pp. 305–307.

- Beagley, B., McAuliffe, C. A., MacRory, P. P., Ndifon, P. T. & Pritchard, R. G. (1990). Chem. Commun. pp. 309–310.
- Bieller, S., Bolte, M., Lerner, H.-W. & Wagner, M. (2005). Inorg. Chem. 44, 9489–9496.
- Brandenburg, K. (2007). *DIAMOND*. Release 3.1e. Crystal Impact GbR, Bonn, Germany.
- Bruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, Y., Zhang, H., Huang, Ch., Yang, Q., Chen, Y., Sun, R., Zhang, F. & Guo, W. (2005). J. Solid State Chem. 178, 3563–3570.
- Crewdson, P., Gambarotta, S., Yap, G. P. A. & Thompson, L. K. (2003). Inorg. Chem. 42, 8579–8584.
- Evans, W. J., Greci, M. A. & Ziller, J. W. (1998). Inorg. Chem. 37, 5221–5226.
- Jerzykiewicz, L. B., Utko, J. & Sobota, P. (2006). Organometallics 25, 4924– 4926.
- Kitajima, N., Singh, U. P., Amagai, H., Osawa, M. & Morooka, Y. (1991). J. Am. Chem. Soc. 113, 7757–7758.
- Kumar, R., de Mel, V. S. J., Sierra, M. L., Hendershot, D. G. & Oliver, J. P. (1994). Organometallics, 13, 2079–2083.
- Lewinski, J., Bury, W., Kopec, T., Tratkiewicz, E., Justyniak, I. & Lipkowski, J. (2005). Eur. J. Inorg. Chem. pp. 3414–3417.
- Lin, C. H., Ko, B. T., Wang, F. C., Lin, C. C. & Kuo, C. Y. (1999). J. Organomet. Chem. 575, 67–75.
- Mantel, C., Baffert, C., Romero, I., Deronzier, A., Pecaut, J., Collomb, M.-N. & Duboc, C. (2004). *Inorg. Chem.* 43, 6455–6463.
- Nihei, M., Hoshino, N., Ito, T. & Oshio, H. (2002). Chem. Lett. pp. 1016-1017.
- Oxford Diffraction (2006). *CrysAlis CCD* and *CrysAlis RED*. Versions 1.171.31. Oxford Diffraction Poland, Wrocław, Poland.
- Pajunen, A., Brunow, G., Haikarainen, A., Pietikainen, P. & Sipila, J. (1998). Z. Kristallogr. New Cryst. Struct. 213, 441–442.
- Rhine, W. E., Eyman, D. P. & Schauer, S. J. (1999). Polyhedron, 18, 905-908.
- Schumann, H., Frick, M., Heymer, B. & Girgsdies, F. (1996). J. Organomet. Chem. 512, 117–126.
- Sobota, P. (2004). Coord. Chem. Rev. 248, 1047-1060.
- Sobota, P., Przybylak, Sz., Utko, J. & Jerzykiewicz, L. B. (2002). Organometallics, 21, 3497–3499.
- Sobota, P., Utko, J., Ejfler, J. & Jerzykiewicz, L. B. (2000). Organometallics, 19, 4929–4931.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Utko, J., Lizurek, A., Jerzykiewicz, L. B. & Sobota, P. (2004). Organometallics, 23, 296–298.
- Westrip, S. P. (2007). publCIF. In preparation.